ME 243 Statistical Mechanics

This is a course on Statistical mechanics that is divided into four (4) parts of assorted topics. It starts from an overview of some basic concepts in thermodynamics and exposes the formal structure of equilibrium statistical mechanics with applications to ideal non-interacting and interacting systems. The course then dwells on more advanced topics such as the liquid state, critical phenomena, Ising model and the renormalization group. In the third part, Kinetic theory is presented through a thorough discussion of the Boltzmann equation and the derivations of the continuum equations. Transport processes are then discussed and transport coefficients are calculated. The theory of Brownian motion is also described as another approach to describe non-equilibrium processes. In the last section, Monte Carlo methods are applied to calculate various macroscopic properties for some lattice models.

Credits

3

Prerequisite

ME 241